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So far, we have talked about modular curves as complex manifolds. We would like to
reinterpret them as algebraic varieties, in order to use the machinery of algebraic geometry.
I have two goals in this talk: first, to reassure you that everything works as algebraic curves
(even over Q), and second, to outline how it works.

1 Function fields over C
Recall the contravariant equivalence of categories

{projective curves X over k} ↔ {finitely generated K/k of transcendence degree 1} (1)

The→ map is “fraction field”; the← map requires writing down a surjection k[t1, . . . , tn]→ K
and taking a projective closure of Spec of the image. (A similar equivalence of categories holds
in dimension d > 1, but something more needs to be said; one way to fix the statement is to
consider projective varieties up to birational equivalence.)

Our goal in this section is to begin with our modular curves as complex manifolds, calcu-
late their function fields (i.e. the field of meromorphic functions on them), and then use these
fields to translate the curves into the setting of algebraic geometry.

Example: for the level-1 modular curve X(1), the function field C(X(1)) is generated by the
j-invariant: C(X(1)) = C(j).

Before we write down some functions on modular curves, we first recall the functions

℘τ (z) = z−2 +
∑

0 6=w∈Λ

(
(z − w)−2 − w−2

)
(2)

g2(τ) = 60
∑

0 6=w∈Λ

w−4, and (3)

g3(τ) = 140
∑

0 6=w∈Λ

w−6, (4)

∗Notes for a talk given in Sug Woo Shin’s reading course on Eichler-Shimura. Main reference: Diamond and
Shurman, Introduction to Modular Forms.
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so that ℘′τ (z)2 = 4℘τ (z)3−g2(τ)℘τ (z)−g3(τ). (Here, τ ∈ H and z ∈ C /Λ, where Λ = Z+Z τ .)

Fix a level N . Let v = (c, d) ∈ Z2 be a nonzero vector, and v ∈ (Z/N)2 its reduction mod N .
We define the function f v0 : H → C by

f v0 (τ) =
g2(τ)

g3(τ)
℘τ

(
cτ + d

N

)
. (5)

Check: this only depends on v (or even ±v), not v; it is weight-0 invariant under Γ(N); and it
is meromorphic on H and at the cusps. Then it defines a meromorphic function on the modular
curve (H/Γ(N)) = X(N).

We introduce a few more pieces of notation:

fd0 (τ) = f
(0,d)
0 (τ) for d 6= 0 (mod N), (6)

f0(τ) =
N−1∑
d=1

fd0 (τ), (7)

f1,0 = f
±(1,0)
0 , (8)

f0,1 = f1 = f
±(0,1)
0 , (9)

jN(τ) = j(Nτ). (10)

Now we are ready to state the proposition:

Proposition 1.1. The fields of meromorphic functions on X(N), X1(N), and X0(N) are

C(X(N)) = C(j, {f±v0 : v ∈ (Z/N)2 − {(0, 0)}}) (11)

= C(j, f1,0, f0,1), (12)

C(X1(N)) = C(j, {f±d0 : d ∈ (Z/N)− {0}}) (13)

= C(j, f1), and (14)

C(X0(N)) = C(j, f0) (15)

= C(j, jN). (16)

Proof idea for the first of these (the rest are similar): we know that C(X(1)) = C(j) ⊂
C(j, {f±v0 }) ⊂ C(X(N)). Let SL2(Z) act on C(X(N)), and show that the kernel of this action
is {±1}Γ(N) and the fixed field is C(X(1)). Then C(X(N))/C(X(1)) is a Galois extension
with Galois group SL2(Z/N)/{±1}. Finally, calculate that C(j, {f±v0 }) is fixed only by the
identity of SL2(Z/N)/{±1}.

In particular, this implies that there are polynomial relations among the functions given above.
The actual relations aren’t generally easy to write down (as far as I know), but the fact that
there exist such relations tells us that our modular curves can (up to birational equivalence)
be embedded into projective space. We will later see that the relations are defined over Q (or
Q(µN) in the case of C(X(N))), so we get models of these curves over those number fields
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instead of over C.

For another description, we introduce the universal elliptic curve Ej. For this, we view τ
and thus j as variables, and define

Ej : y2 = 4x3 −
(

27j

j − 1728

)
x−

(
27j

j − 1728

)
(17)

where the coefficients are chosen so that the j-invariant is actually j. This is an elliptic curve
over the transcendental field extension C(j), and it specializes to an elliptic curve over C for each
j ∈ C except 0 and 1728. Then it can be shown that C(X(N)) is also equal to C(j, x(Ej[N ])).
(Again, the j here is transcendental over C, and x(Ej[N ]) denotes the x-coordinates of N -
torsion points of Ej, viewed as elements of the algebraic closure of C(j).) For the sake of the
following diagram, we also want to consider C(j, Ej[N ]), where we have adjoined both the x-
and y-coordinates of Ej[N ]; this is a quadratic extension of C(j, x(Ej[N ])).

Draw diagram here: ramified covers of X(1), extensions of function fields, and the corresponding
Galois groups. See page 285.

2 Function fields over Q
We previously discussed the fields C(X(N)) = C(j, f1,0, f0,1) = Q(j, x(Ej[N ])), C(X1(N)) =
C(j, f1), and C(X0(N)) = C(j, f0) = C(j, jN), where all of the things we adjoined were func-
tions on the respective modular curves. Now we consider the same fields Q(j, Ej[N ]) and so on.
We want these fields to have transcendence degree 1 over Q, so that they correspond to curves
over Q. It suffices to prove this for the field at the top of our tower, Q(j, Ej[N ]), because the
rest of the fields we care about lie between this and the pure transcendence degree 1 field Q(j).
But this is actually not hard to see: the equations defining what it means to be N -torsion on
Ej are polynomials over Q(j), so their solutions belong to Q(j).

So all of these fields have transcendence degree 1 over Q, which means that they define curves.
In the cases of X0(N) and X1(N), the function field extensions involved are just Q(j, f0) and
Q(j, f1) respectively, both over Q. But in the case of X(N), we want the field Q(j, f1,0, f0,1) to
be over the base field Q(µN) instead of just Q. I think this is because Q(j, f1,0, f0,1)∩Q = Q(µN),
and if we made it a curve over Q, then it wouldn’t be geometrically integral.

Draw a diagram of Galois groups (page 288), and explain how the isomorphism works, by
the action of Gal(Q(µN , j, Ej[N ])) on Ej[N ]. Mention that det ρ : Gal(Q(µN , j, Ej[N ])/Q) →
(Z /N)× describes the action of that Galois group on µN : µσ = µdet(ρ(σ)). (The proof uses the
Weil pairing.)

3 Modular curves as algebraic curves and Modularity

Theorem 3.1. (The modularity theorem, version XQ.) Let E be an elliptic curve over Q.
Then for some N there is a surjective morphism of curves X0(N)alg → E over Q.
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Definition 3.2. The smallest N that for which the above map exists is called the analytic
conductor of E.

There also exists a version XC, which says that any elliptic curve E/C with rational j-
invariant1 admits a surjective holomorphic map X0(N) → E of Riemann surfaces. The XQ
version easily implies the XC version (base change and analytify, after checking that a curve
with rational j-invariant admits a model over Q). The reverse implication is true but more
difficult, and involves possibly increasing the value of N .

There are a few other versions of the modularity theorem. The version JQ says the same
thing as XQ but with X0(N)alg replaced by its Jacobian J0(N)alg; the version AQ uses instead
the abelian variety A′f,alg associated to a newform f ∈ S2(Γ0(N)). (Have we talked about this
construction before?) The version of modularity that was actually proved is in the language
of Galois representations: for every elliptic curve E/Q, the `-adic Galois representation ρE,`
arising from it agrees with the `-adic Galois representation arising from some modular form, ρf,`.

Why do we care about having a modular parametrization X0(N) → E? One good reason:
it allows us to write down points on an elliptic curve with reasonably small residue fields, possi-
bly even Q. Specifically, the Heegner point construction gives a way to choose some nice points
on X0(N), map them down to E, and apply some Galois symmetrization process to obtain
a single point defined over Q under certain hypotheses. Gross and Zagier showed that this
construction essentially proves the Birch and Swinnerton-Dyer conjecture in the rank-1 case.
This is very interesting, especially if you or your advisor is named Xinyi Yuan.

Examples of modularity: for some choices of N , X0(N) has genus 1, so X0(N) ∼= J0(N) ∼= A′f for
the unique (adjectives) newform f ∈ S2(Γ0(N)). This holds in particular for N = p = 11, 17, 19.
(There is even an algorithm to write down equations for A′f , and thus for X0(N) in these cases.
See page 298.) Then these elliptic curves certainly admit surjective morphisms, in particular
isomorphisms, from modular curves.

4 Isogenies and Hecke operators

Isogenies work like you want them to in the algebraic setting; in particular, you can quotient
out by finite subgroups (at least over a field that contains the coordinates of the appropriate
torsion points), and isogeny is an equivalence relation. (Symmetry comes from dual isogenies;
composing gives multiplication by the degree).

Previously we’ve seen that the Hecke algebra TZ = Z[Tp, 〈d〉] acts on the Jacobian J1(N) =
Pic0(X1(N)) as a complex manifold. But we now know that X1(N) is an algebraic variety over
Q, so J1(N) is too. We would like the Hecke operators 〈d〉 and Tp to act by morphisms over Q.
Fortunately, they do.

1For reference: j = 1728 4a3

4a3+27b2 .
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